The variation of Curie temperature and dielectric relaxor behaviour in the nominal (1-x)BaTiO₃-xBiAlO₃ system

Yu-Dong Hou • Lei Cui • Mei-Ju Si • Hai-Yan Ge • Man-Kang Zhu • Hui Yan

Received: 18 October 2010 / Accepted: 1 February 2012 / Published online: 15 February 2012 © Springer Science+Business Media, LLC 2012

Abstract BiAlO₃ is a perovskite ferroelectric with a high Curie temperature above 520°C. However, it is difficult to prepare pure perovskite phase by the conventional method. In this experiment, BaTiO₃ has been selected as host to incorporate BiAlO₃, and the nominal binary system of $(1-x)BaTiO_3-xBiAlO_3$ has been investigated with regard to its Curie temperature (T_c) and dielectric relax behaviors. It was found that the pure perovskite phase can be retained below x=0.08. However, the value of T_c in the system doesn't follow the normal Vegard's law, on the contrary, shows the decreasing trend with the increase of x. According to the compared experiments about Bi³⁺ and Al³⁺ doping in BaTiO₃, it can be safely concluded that the combined substitution of Bi³⁺ and Al³⁺ played the dominant role to decrease the T_c and increase the relaxor behavior in (1-x) BaTiO₃-*x*BiAlO₃ system.

Keywords Ceramics · Defects · Dielectric properties · Microstructure

1 Introduction

There is an increasing demand for the environment friendly materials like lead-free ceramics for applications in piezoelectric device. In 2005, density functional theoretical studies on bismuth aluminate predicted that BiAlO₃ could be a promising lead-free ferroelectrics with a polar rhombohedral system and a Curie temperature (T_c) about 800 K [1]. Later, the characterization of the BiAlO₃ ceramics synthesized by the high-pressure method demonstrated that BiAlO₃ is indeed a perovskite ferroelectric with a Curie temperature T_c > 520°C [2, 3]. Especially, it was found that BiAlO₃ has no structural phase transitions between -133 and 550°C and the d_{33} value of 25–28 pC/N can be maintained until 520°C. It showed great potential as application in high temperature piezoelectric device. However, BiAlO₃ could only be prepared by a high-pressure high-temperature technique and it would decompose above 820 K [4]. Thus, two main factors, the poor thermal stability and extreme synthetic conditions, have limited the practical usability of BiAlO₃.

It is well-known that lead-based relaxor ferroelectrics, such as Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN), Pb(Zn_{1/3}Nb_{2/3})O₃ (PZN), etc., are difficult to be prepared by the conventional oxide mixing method [5, 6]. To stabilize the pure perovskite phase, addition of other ideal perovskite materials with simple crystal structure, such as BaTiO₃ and PbTiO₃, to these compounds to form solid solutions, is an effective method. So it was expected that this method can be extended to the preparation of pure BiAlO₃ perovskie phase, meanwhile, the properties of both the host compound and BiAlO₃ could be modified. In this way, many solid solutions, such as BaTiO₃-BiAlO₃ [7], (Na_{0.5}Bi_{0.5})TiO₃-BiAlO₃ [8], (Na_{0.5} K_{0.5})NbO₃-BiAlO₃ [9] and PbTiO₃-BiAlO₃ [10], have been proposed. However, it should be noted that the Curie temperatures of these solid solutions strongly decrease with the increase of BiAlO₃ content, even lower than that of the host compound. So this venue is unsuccessful in respect to developing high Curie temperature ferroelectrics.

As we know, the mixed ferroelectrics solid solutions, composed by two different ferroelectric crystals with similar structure, showed compositionally dependent ferroelectric parameters such as the Curie temperature T_c (or T_m corresponding to the maximum value of the dielectric

Y.-D. Hou (⊠) · L. Cui · M.-J. Si · H.-Y. Ge · M.-K. Zhu · H. Yan Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China e-mail: ydhou@bjut.edu.cn

permittivity ε_m), following a famous linear relationship of Vegard' rule [11],

$$T_{\rm c}(x) = (1 - x)T_{\rm c}(0) + xT_{\rm c}(1)$$
(1)

Where $T_c(x)$ is the Curie temperature of the solid solution, $T_c(0)$ and $T_c(1)$ are the Curie temperature of two end members. Although this law is often broken and the theoretical backing needs to be further clarified, in some instances, it serves as a useful rule and also can be extended to the more complicated system with multiplicity of phases, such as (1-x)PNN- xPZT [12], (1-x)PZN- xPZT [13] and (1-x)KNN- *x*LiNbO₃ [14].

So there aroused the suspicions that what is the main reason responsible for the large deviation of Curie temperature from Vegard's law in the reported BiAlO₃ based system [7–10]. It is believed that the Curie temperature reflects the stability of oxygen octahedron, which can be influenced by the occupation state of A or B ions in ABO₃ perovskite structure [15]. Thus, we speculate that both the substitutions of Bi³⁺ at A site and Al³⁺ at B site can adjust the Curie temperature of solid solution. In order to verify this speculation, we selected classical ferroelectric BaTiO₃ as host material to incorporate BiAlO₃. For comparison, Al₂O₃ and Bi₂O₃ were selected independently to add to BaTiO₃ to evaluate the doping effect on Curie temperature and relaxor behaviors.

2 Experimental

Three series of ceramic specimens, (1-x)BaTiO₃xBiAlO₃ (x=0, 0.02, 0.05, 0.08, 0.10, 0.12, hereafter designated as BA0, BA2, BA5, BA8, BA10 and BA12, respectively), BaTiO₃-yBi₂O₃ (y=0.002, 0.005, 0.008 and 0.010, hereafter designated as Bi2, Bi5, Bi8 and Bi10, respectively) and BaTiO₃-zAl₂O₃ (z=0.002, 0.005, 0.008 and 0.010, hereafter designated as Al2, A15, A18 and A110, respectively), were synthesized using the conventional solid state reaction method. Stoichiometric amount of analytical grade BaCO₃ (99.0%), TiO₂ (99.0%), Bi₂O₃ (99.0%), and Al₂O₃ (99.0%) were thoroughly mixed and calcined at 1100°C for 4 h. The calcined powders were pressed into disk samples with a diameter of 11.5 mm and then sintered in closed crucibles at 1300°C for 2 h. The crystal structures of the samples were recorded on x-ray diffractometer (XRD) (model Bruker 8D Advance, Karlsruhe, Germany) using Cu $K\alpha$ radiation. The dielectric property and its dependence on temperature were measured using a LCR analyzer (model E4980A; Agilent Technologies, Santa Clara, CA) with an automated temperature controller.

3 Results and discussion

Figure 1 shows the XRD patterns of $(1-x)BaTiO_3-xBiAlO_3$ ceramics. All the prominent peaks in this figure can be indexed with BaTiO₃ type perovskite structure. Impurity peak appeared at $2\theta = 28^{\circ}$ for $x \ge 0.08$, which arises from the formation of Bi₂Al₄O₉-type secondary phase [16]. Lattice parameters were obtained by least-squares refinement of the peak positions of 6-7 prominent Bragg peaks, and the results are shown in Fig. 2. For x=0.00, i.e., BaTiO₃, the lattice parameters were refined as a=0.3994 nm and c=0.4034 nm which are very close to the values found in JCPDF card No.83-1880 (e.g., a=0.3994 nm and c=0.4033 nm). The c parameter decreases continuously on increasing x while the a parameter increases until x up to 0.08, beyond which it shows decreasing trend. The appearance of turn point at 0.08 can be attributed to the formation of second phase. Thereby, the single phase formation is possible under conventional synthesis conditions only in the low composition range of $0 \le x \le 0.0.08$ [7].

The temperature dependence of the dielectric constant of the BaTiO₃-BiAlO₃ nominal binary system at different frequency is shown in Fig. 3. For pure BaTiO₃, the dielectric peak appears relatively sharp at $T_c=120^{\circ}$ C, similar to that reported in the textbook. An increasing broadness of the dielectric peak with frequency dispersion can be observed clearly with increasing *x*, indicating the enhancement of relaxor features. It should be noted that T_c shifts to lower temperature with increasing *x*, referring to the large deviation from Vegard's Law. As reported, both BaTiO₃ and BiAlO₃ belong to the perovskite phase, and the T_c of BaTiO₃ is about 120°C while that of BiAlO₃ is near 520°C.

Fig. 1 XRD patterns of $(1-x)BaTiO_3$ -xBiAlO₃ ceramics recorded at room temperature

Fig. 2 Variation of lattice parameters of $(1-x)BaTiO_3$ -xBiAlO₃ ceramics

So if Vegard's Law works well, the introduction of BiAlO₃ to BaTiO₃ should increase the T_c . However, the experimental results show the converse trend. We speculate that this deviation should be attributed to the substitute effect of Bi and Al in host BaTiO₃.

In order to further clarify the mechanism which results in decreasing Curie temperature of BaTiO₃-BiAlO₃, Al₂O₃ and Bi₂O₃ were selected independently to dope with BaTiO₃ system. In the experimental substitution content range, both BaTiO₃-Bi₂O₃ and BaTiO₃-Al₂O₃ systems show the pure perovskite structure and no detected second phase can be found, indicating that Al and Bi entered the BaTiO₃ sublattice. These results are consistent with the report in literatures [17, 18]. Figure 4 shows the temperature dependences of the dielectric constant and the loss tangent of the Al₂O₃ doped BaTiO₃ systems. As seen in Fig. 4, both ε_m and T_c show the decreasing trend with increasing Al₂O₃ content.

Fig. 3 (Color online) Temperature dependence of the dielectric constant for BaTiO₃-BiAlO₃ nominal binary system at different frequency

150

200

ω

Fig. 4 (Color online) Temperature dependence of the dielectric constant and the loss tangent for Al₂O₃ doped BaTiO₃ system at 1 kHz

Temperature (°C)

100

50

According to the crystal data [19], the ionic radii of Al³⁺ and Ti⁴⁺ with six coordination are 0.530 and 0.605 Å, respectively. So Al³⁺ ions likely replace Ti⁴⁺ ions in BaTiO₃, which leads to the creation of oxygen vacancies due to the imbalance of valence. The oxygen vacancies can pin the movement of the ferroelectric domain walls, resulting in a decrease of ε_m [15]. In addition, for the reason that the bond energy of Al–O (512 kJ/mol) is lower than that of Ti–O (662 kJ/mol), it is reasonable to deduce that the substitutions of Ti⁴⁺ by Al³⁺ can decrease the stability of the B-site ions in the center of BO₆ octahedra and thus decrease Curie temperature T_c . This phenomenon can also be seen in other doped ferroelectric systems [20].

Figure 5 shows the temperature dependence of the dielectric constant and the loss tangent of the Bi₂O₃ doped BaTiO₃ system. It can be found that addition of Bi³⁺ reduced T_c , whereas at the same time increased ε_m . The doped Bismuth ions normally occupy the twelve-fold coordinated crystallographic Ba sites in BaTiO₃ because of their similar

Fig. 5 (Color online) Temperature dependence of the dielectric constant and the loss tangent for Bi_2O_3 doped $BaTiO_3$ system at 1 kHz

ionic radius and similar electronegativity. To compensate the charge imbalance aroused from the substitution of the A-site Ba^{2+} by Bi^{3+} ions, the off-centered Bi^{3+} ions and V''_A formed $Bi^{3+} - V''_A$ dipoles and thus set up a local electric field, which resulted in the decrease of Curie temperature [18]. The increase of ε_m by Bi_2O_3 addition may originate from the special electronic structure of Bi^{3+} [10]. Like Pb^{2+} , Bi^{3+} ion has the lone $6s^2$ pair electrons, which can strongly hybridize with O 2*p* states, whereas the interaction between Ba 5*p* and O 2*p* is completely ionic. The Bi-O bonding interaction, and the smaller ionic radius of Bi^{3+} (1.11 Å) compared with $Ba^{2\pm}$ (1.60 Å) [19], lead to a large strain that increases the dielectric constant in $BaTiO_3-Bi_2O_3$ system.

According to the compared results in the BaTiO₃-Bi₂O₃ and BaTiO₃-Al₂O₃ systems, it can be safely concluded that the combined substitution of Bi³⁺ and Al³⁺ induced the decrease of Curie temperature in (1-*x*) BaTiO₃-*x*BiAlO₃ system, which is responsible for the deviation from Vegard's law. Moreover, as seen in Fig. 3, the relaxor features are enhanced in (1-*x*)BaTiO₃-*x*BiAlO₃ system. In general, relaxor behavior appears when at least two cations occupy the same crystallographic site in ABO₃ structure, either A or B, which gives rise to random fields that impede the development of long-range polar ordering. The substitution of Bi³⁺ for Ba²⁺ on the A site and Al³⁺ for Ti⁴⁺ on the B site disrupted the long-range dipolar interaction of BaTiO₃, resulting in the increase of relaxor behavior.

4 Conclusions

In conclusion, the solid solution of BaTiO₃-BiAlO₃ has been prepared in this work. The Curie temperature of the nominal binary system shows the large deviation from the prediction by Vegard's law. Due to the doping effects, the coupled substitutions of Bi³⁺ for Ba²⁺ on the A site and Al³⁺ for Ti⁴⁺ on the B sites play the dominant role to decrease T_c . Moreover, the heterovalent substitutions of Bi³⁺ and Al³⁺ enhance the relaxor behavior of BaTiO₃, which can be attributed to the disruption of long-range dipolar interaction due to compositional disorder on both A and B site. Acknowledgements This work was partially supported by the National Natural Science Foundation of China (Grant No. 60601020, 51072008), the Natural Science Foundation of Beijing (Grant No. 2102006), and the PHR (IHLB) (Grant No. PHR201008012, PHR201007101).

References

- P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, N.A. Spaldin, Chem Mater 17, 1376 (2005). doi:10.1021/cm0480418
- A.A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, E.T. Muromachi, Chem Mater 18, 133 (2006). doi:10.1021/cm052020b
- J. Zylberberg, A.A. Belik, E.T. Muromachi, Z.G. Ye, Chem Mater 19, 6385 (2007). doi:10.1021/cm071830f
- R.V.K. Mangalam, S.V. Bhat, A. Iyo, Y. Tanaka, A. Sundaresan, C. N.R. Rao, Solid State Commun 146, 435 (2008). doi:10.1016/j. ssc.2008.03.039
- N.N. Wu, Y.D. Hou, C. Wang, M.K. Zhu, X.M. Song, H. Yan, J Appl Phys 105, 084107 (2009). doi:10.1063/1.3106664
- L.Y. Zhao, Y.D. Hou, L.M. Chang, M.K. Zhu, H. Yan, J Mater Res 24, 2029 (2009). doi:10.1557/JMR.2009.0246
- 7. H.C. Yu, Z.G. Ye, J Appl Phys 103, 034114 (2008). doi:10.1063/ 1.2838479
- H.C. Yu, Z.G. Ye, Appl Phys Lett 93, 112902 (2008). doi:10.1063/ 1.2967335
- R.Z. Zuo, D.Y. Lv, J. Fu, Y. Liu, L.T. Li, J Alloy Compd 476, 836 (2009). doi:10.1016/j.jallcom.2008.09.123
- A.K. Kalyani, R. Garg, R. Ranjan, Appl Phys Lett 94, 202903 (2009). doi:10.1063/1.3136855
- C. Aragó, C.L. Wang, J.A. Gonzalo, Ferroelectrics 337, 233 (2006). doi:10.1080/00150190600717042
- N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, J Appl Phys 96, 5103 (2004). doi:10.1063/1.1796511
- N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, D.P. Cann, J Electroceram 16, 141 (2006). doi:10.1007/s10832-006-4927-2
- Y.P. Guo, K. Kakimoto, H. Ohsato, Appl Phys Lett 85, 4121 (2004). doi:10.1063/1.1813636
- Y.D. Hou, M.K. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, C.S. Tian, J Am Ceram Soc 87, 847 (2004)
- M. Okada, T. Yoshimura, A. Ashida, N. Fujimura, Jpn J Appl Phys 43, 6609 (2004). doi:10.1143/JJAP.43.6609
- S.J. Lee, S.M. Park, Y.H. Han, Jpn J Appl Phys 48, 031403 (2009). doi:10.1143/JJAP.48.031403
- S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, J Phys D: Appl Phys 42, 065413 (2009). doi:10.1088/0022-3727/42/6/065413
- 19. R.D. Shannon, C.T. Prewitt, Acta Cryst B25, 925 (1969)
- 20. Y.D. Hou, L.M. Chang, M.K. Zhu, X.M. Song, H. Yan, J Appl Phys **102**, 084507 (2007). doi:10.1063/1.2800264